Pfaffian forms - definizione. Che cos'è Pfaffian forms
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è Pfaffian forms - definizione

DIFFERENTIAL FORM OF DEGREE ONE; SECTION OF COTANGENT BUNDLE
1-form; One form; Pfaffian form; 1-forms; One-form

Contrapuntal Forms (Hepworth)         
  • ''Contrapuntal Forms'', in Harlow in 2016
SCULPTURE BY BARBARA HEPWORTH
Contrapunctal Forms (sculpture); Contrapuntal Forms (sculpture)
Contrapuntal Forms (BH 165) is a stone sculpture by Barbara Hepworth, one of her first public commissions, made in 1950–51 for the Festival of Britain and installed outside the Dome of Discovery on South Bank, London. It was one of two Hepworth commissions for the festival: the other was an abstract rotating sculpture, Turning Forms (BH 166).
One-form         
In linear algebra, a one-form on a vector space is the same as a linear functional on the space. The usage of one-form in this context usually distinguishes the one-forms from higher-degree multilinear functionals on the space.
Pfaffian function         
Pfaffian chain; Noetherian chain; Noetherian function
In mathematics, Pfaffian functions are a certain class of functions whose derivative can be written in terms of the original function. They were originally introduced by Askold Khovanskii in the 1970s, but are named after German mathematician Johann Pfaff.

Wikipedia

One-form (differential geometry)

In differential geometry, a one-form on a differentiable manifold is a smooth section of the cotangent bundle. Equivalently, a one-form on a manifold M {\displaystyle M} is a smooth mapping of the total space of the tangent bundle of M {\displaystyle M} to R {\displaystyle \mathbb {R} } whose restriction to each fibre is a linear functional on the tangent space. Symbolically,

where α x {\displaystyle \alpha _{x}} is linear.

Often one-forms are described locally, particularly in local coordinates. In a local coordinate system, a one-form is a linear combination of the differentials of the coordinates:

where the f i {\displaystyle f_{i}} are smooth functions. From this perspective, a one-form has a covariant transformation law on passing from one coordinate system to another. Thus a one-form is an order 1 covariant tensor field.